Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
BackgroundDoxorubicin and other anthracyclines are crucial cancer treatment drugs. However, they are associated with significant cardiotoxicity, severely affecting patient care and limiting dosage and usage. Previous studies have shown that low carbon monoxide (CO) concentrations protect against doxorubicin toxicity. However, traditional methods of CO delivery pose complex challenges for daily administration, such as dosing and toxicity. To address these challenges, we developed a novel oral liquid drug product containing CO (HBI‐002) that can be easily self‐administered by patients with cancer undergoing doxorubicin treatment, resulting in CO being delivered through the upper gastrointestinal tract. Methods and ResultsHBI‐002 was tested in a murine model of doxorubicin cardiotoxicity in the presence and absence of lung or breast cancer. The mice received HBI‐002 twice daily before doxorubicin administration and experienced increased carboxyhemoglobin levels from a baseline of ≈1% to 7%. Heart tissue from mice treated with HBI‐002 had a 6.3‐fold increase in CO concentrations and higher expression of the cytoprotective enzyme heme oxygenase‐1 compared with placebo control. In both acute and chronic doxorubicin toxicity scenarios, HBI‐002 protected the heart from cardiotoxic effects, including limiting tissue damage and cardiac dysfunction and improving survival. In addition, HBI‐002 did not compromise the efficacy of doxorubicin in reducing tumor volume, but rather enhanced the sensitivity of breast 4T1 cancer cells to doxorubicin while simultaneously protecting cardiac function. ConclusionsThese findings strongly support using HBI‐002 as a cardioprotective agent that maintains the therapeutic benefits of doxorubicin cancer treatment while mitigating cardiac damage.more » « less
-
ABSTRACT We describe the discovery of an archaeal virus, one that infects archaea, tentatively named Thermoproteus spherical piliferous virus 1 (TSPV1), which was purified from a Thermoproteales host isolated from a hot spring in Yellowstone National Park (USA). TSPV1 packages an 18.65-kb linear double-stranded DNA (dsDNA) genome with 31 open reading frames (ORFs), whose predicted gene products show little homology to proteins with known functions. A comparison of virus particle morphologies and gene content demonstrates that TSPV1 is a new member of the Globuloviridae family of archaeal viruses. However, unlike other Globuloviridae members, TSPV1 has numerous highly unusual filaments decorating its surface, which can extend hundreds of micrometers from the virion. To our knowledge, similar filaments have not been observed in any other archaeal virus. The filaments are remarkably stable, remaining intact across a broad range of temperature and pH values, and they are resistant to chemical denaturation and proteolysis. A major component of the filaments is a glycosylated 35-kDa TSPV1 protein (TSPV1 GP24). The filament protein lacks detectable homology to structurally or functionally characterized proteins. We propose, given the low host cell densities of hot spring environments, that the TSPV1 filaments serve to increase the probability of virus attachment and entry into host cells. IMPORTANCE High-temperature environments have proven to be an important source for the discovery of new archaeal viruses with unusual particle morphologies and gene content. Our isolation of Thermoproteus spherical piliferous virus 1 (TSPV1), with numerous filaments extending from the virion surface, expands our understanding of viral diversity and provides new insight into viral replication in high-temperature environments.more » « less
-
Major evolutionary transitions, in which animals develop new body plans and adapt to dramatically new habitats and lifestyles, have punctuated the history of life. The origin of cetaceans from land-living mammals is among the most famous of these events. Much earlier, during the Mesozoic Era, many reptile groups also moved from land to water, but these transitions are more poorly understood. We use computed tomography to study changes in the inner ear vestibular system, involved in sensing balance and equilibrium, as one of these groups, extinct crocodile relatives called thalattosuchians, transitioned from terrestrial ancestors into pelagic (open ocean) swimmers. We find that the morphology of the vestibular system corresponds to habitat, with pelagic thalattosuchians exhibiting a more compact labyrinth with wider semicircular canal diameters and an enlarged vestibule, reminiscent of modified and miniaturized labyrinths of other marine reptiles and cetaceans. Pelagic thalattosuchians with modified inner ears were the culmination of an evolutionary trend with a long semiaquatic phase, and their pelagic vestibular systems appeared after the first changes to the postcranial skeleton that enhanced their ability to swim. This is strikingly different from cetaceans, which miniaturized their labyrinths soon after entering the water, without a prolonged semiaquatic stage. Thus, thalattosuchians and cetaceans became secondarily aquatic in different ways and at different paces, showing that there are different routes for the same type of transition.more » « less
-
Abstract In this article, we – the Bacterial Viruses Subcommittee and the Archaeal Viruses Subcommittee of the International Committee on Taxonomy of Viruses (ICTV) – summarise the results of our activities for the period March 2020 – March 2021. We report the division of the former Bacterial and Archaeal Viruses Subcommittee in two separate Subcommittees, welcome new members, a new Subcommittee Chair and Vice Chair, and give an overview of the new taxa that were proposed in 2020, approved by the Executive Committee and ratified by vote in 2021. In particular, a new realm, three orders, 15 families, 31 subfamilies, 734 genera and 1845 species were newly created or redefined (moved/promoted).more » « less
An official website of the United States government
